About Advances in Tensor Data Denoising Methods
نویسندگان
چکیده
Tensor methods are of great interest since the development of multicomponent sensors. The acquired multicomponent data are represented by tensors, that is, multiway arrays. This paper presents advances on filtering methods to improve tensor data denoising. Channel-by-channel and multiway methods are presented. The first multiway method is based on the lower-rank (K1, . . . ,KN ) truncation of the HOSVD. The second one consists of an extension of Wiener filtering to data tensors. When multiway tensor filtering is performed, the processed tensor is flattened along each mode successively, and singular value decomposition of the flattened matrix is performed. Data projection on the singular vectors associated with dominant singular values results in noise reduction. We propose a synthesis of crucial issues which were recently solved, that is, the estimation of the number of dominant singular vectors, the optimal choice of flattening directions, and the reduction of the computational load of multiway tensor filtering methods. The presented methods are compared through an application to a color image and a seismic signal, multiway Wiener filtering providing the best denoising results. We apply multiway Wiener filtering and its fast version to a hyperspectral image. The fast multiway filtering method is 29 times faster and yields very close denoising results.
منابع مشابه
Directional Tensor Product Complex Tight Framelets and Image Denoising
Due to simple implementation and relatively easy construction of 1D wavelets, real-valued tensor product wavelets have been commonly used for high-dimensional problems. However, real-valued tensor product wavelets are known to have some shortcomings, in particular, they lack directionality. For example, for 2D data such as images, edge singularities are ubiquitous and play a more fundamental ro...
متن کاملDenoising Time-Of-Flight Data with Adaptive Total Variation
For denoising depth maps from time-of-flight (ToF) cameras we propose an adaptive total variation based approach of first and second order. This approach allows us to take into account the geometric properties of the depth data, such as edges and slopes. To steer adaptivity we utilize a special kind of structure tensor based on both the amplitude and phase of the recorded ToF signal. A comparis...
متن کاملDiffusion-Tensor MRI Based Skeletal Muscle Fiber Tracking.
A skeletal muscle's function is strongly influenced by the internal organization and geometric properties of its fibers, a property known as muscle architecture. Diffusion-tensor magnetic resonance imaging-based fiber tracking provides a powerful tool for non-invasive muscle architecture studies, has three-dimensional sensitivity, and uses a fixed frame of reference. Significant advances have b...
متن کاملTitle Reconstructing diffusion kurtosis tensors from sparse noisymeasurements
Diffusion kurtosis imaging (DKI) is a recent MRI based method that can quantify deviation from Gaussian behavior using a kurtosis tensor. DKI has potential value for the assessment of neurologic diseases. Existing techniques for diffusion kurtosis imaging typically need to capture hundreds of MRI images, which is not clinically feasible on human subjects. In this paper, we develop robust denois...
متن کاملStructure-adaptive sparse denoising for diffusion-tensor MRI
Diffusion tensor magnetic resonance imaging (DT-MRI) is becoming a prospective imaging technique in clinical applications because of its potential for in vivo and non-invasive characterization of tissue organization. However, the acquisition of diffusion-weighted images (DWIs) is often corrupted by noise and artifacts, and the intensity of diffusion-weighted signals is weaker than that of class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008